Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Microsurgery ; (6): 95-100, 2023.
Article in Chinese | WPRIM | ID: wpr-995482

ABSTRACT

Objective:To explore the effect of sciatic nerve derived exosomes(SN-EXO) on axon regeneration and functional recovery after peripheral nerve injury(PNI).Methods:From March 2021 to October 2022, the Department of Orthopedics of the First Affiliated Hospital of Zhengzhou University studied the effect of SN-EXO on the proliferation of Schwann cells(SCs) through EdU cell proliferation experiment. Twenty-one healthy male SD rats were randomly divided into 3 groups of sham operation, peripheral nerve injury(PNI) and SN-EXO treatment, with 7 rats in each group. The right sciatic nerves of rat models in sham group were exposed without injury. In the rat in PNI group and SN-EXO treatment group, PBS and SN-EXO were injected under the epineurium of right sciatic nerves following sciatic nerve crush. Sciatic nerve function index(SFI) was performed at 28 days after operation, and then sacrificed. Right sciatic nerves were removed for further exploration of nerve regeneration. The histopathological changes and axon arrangement of sciatic nerves were evaluated by HE staining. Regeneration efficiency of neurofilaments and SCs were obserred by NF200 and S100β double staining of sciatic nerve. The data obtained were statistically analyzed, and P<0.05 was statistically significant. Results:It was found that SN-EXO can significantly enhance the proliferation ability of SCs, with statistically significant difference( P<0.05). SFI in SN-EXO treatment group and PNI group were(-27.65±4.36) and(-57.33±7.49), respectively, and the difference was statistically significant( P<0.05). Axons in SN-EXO treatment group were arranged more closely and orderly than those in the PNI group at 28 days after operation, and there were less injury induced axon disintegration and vacuolation. Immunofluorescence assay indicated that NF200 and S100β fluorescence intensity in SN-EXO treatment group was significantly higher than that in the PNI group, and the difference was statistically significant( P<0.05). Conclusion:SN-EXO could enhance the proliferation of SCs to promote axon regeneration following peripheral nerve injury.

2.
Chinese Journal of Biotechnology ; (12): 26-36, 2012.
Article in Chinese | WPRIM | ID: wpr-304516

ABSTRACT

RNA interference (RNAi) is a promising technology in development of specific antiviral therapy, but the quantitative detection of small interfering RNA (siRNA) expressed in vivo is the main challenge to assess its antiviral effect. In order to detect the siRNA molecules (siN1 and SiN2) particularly expressed in cells to inhibit the replication of classical swine fever virus (CSFV), serial specific stem-loop primers were designed and synthesized. Two of them (SLP-N1-6 and SLP-N2-8) were selected by screening in cross combination and successfully used in establishment of an optimal stem-loop RT-qPCR, which showed high specificity and sensitivity in detection of anti-CSFV siRNA expressed in PK-15 cells. The method was capable of detecting 10(2) to 10(8) copies of siRNA molecule with good parallel relationship (R(sq) = 0.999) and high amplification efficiency (Eff. = 98.2%). Therefore, the established stem-loop RT-qPCR can be used as an ideal tool in quantitative assessment of the anti-CSFV effects of RNAi in combination with detection of viral antigens using indirect immunofluorescent assay and TCID50, providing a novel technique for evaluating the antiviral effects of the siRNA expressed in anti-CSFV transgenic pigs to be established in future.


Subject(s)
Animals , Cell Line , Classical Swine Fever Virus , Genetics , Metabolism , RNA Interference , RNA, Small Interfering , Genetics , Metabolism , RNA, Viral , Genetics , Real-Time Polymerase Chain Reaction , Methods , Swine , Transfection , Viral Nonstructural Proteins , Genetics , Metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL